Free Shipping to all UK customers for orders over £25.00

0 Total items on my wish-list.

Free Shipping to all UK customers for orders over £25.00

Ryefieldbooks Logo

Ryefield Books

Free Shipping to all UK customers for orders over £25.00

Ryefieldbooks Logo

Ryefield Books

© Copyright Ryefield Books - All Right Reserved
Product Categories
My Shopping Cart
Void image

You shopping cart is empty

You may browse our offerings to locate what you're
searching for, then put it in your shopping cart.

Book cover image

Introduction to Non-Invasive EEG-Based Brain-Computer Interfaces for Assistive Technologies

Usually dispatched within 3 - 5 business days.

In Stock (1024)

£ 168.75

Description

This book aims to bring to the reader an overview of different applications of brain-computer interfaces (BCIs) based on more than 20 years of experience working on these interfaces. The author provides a review of the human brain and EEG signals, describing the human brain, anatomically and physiologically, with the objective of showing some of the patterns of EEG (electroencephalogram) signals used to control BCIs. It then introduces BCIs and different applications, such as a BCI based on ERD/ERS Patterns in α rhythms (used to command a robotic wheelchair with an augmentative and alternative communication (AAC) system onboard it); a BCI based on dependent-SSVEP to command the same robotic wheelchair; a BCI based on SSVEP to command a telepresence robot and its onboard AAC system; a BCI based on SSVEP to command an autonomous car; a BCI based on independent-SSVEP (using Depth-of-Field) to command the same robotic wheelchair; the use of compressive technique in SSVEP-based BCI; a BCI based on motor imagery (using different techniques) to command a robotic monocycle and a robotic exoskeleton; and the first steps to build a neurorehabilitation system based on motor imagery of pedalling together an in immersive virtual environment. This book is intended for researchers, professionals and students working on assistive technology.