Free Shipping to all UK customers for orders over £25.00

0 Total items on my wish-list.

Free Shipping to all UK customers for orders over £25.00

Ryefieldbooks Logo

Ryefield Books

Free Shipping to all UK customers for orders over £25.00

Ryefieldbooks Logo

Ryefield Books

© Copyright Ryefield Books - All Right Reserved
Product Categories
My Shopping Cart
Void image

You shopping cart is empty

You may browse our offerings to locate what you're
searching for, then put it in your shopping cart.

Book cover image

Self-Oscillations in Dynamic Systems

Usually dispatched within 3 - 5 business days.

In Stock (424)

£ 53.99

Description

This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits. Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.